A New Minimum Distance Estimation Procedure of ARFIMA Processes
نویسنده
چکیده
A new parametric minimum distance time-domain estimator for ARFIMA processes is introduced in this paper. The proposed estimator minimizes the sum of squared correlations of residuals obtained after filtering a series through ARFIMA parameters. The estimator is easy to compute and is consistent, asymptotically normally distributed and efficient for fractionally integrated (FI) processes with an integration order d strictly greater than -0.75. Therefore, it can be applied to both stationary and non-stationary processes. Deterministic components are also allowed in the DGP. Furthermore, as a by-product, the estimation procedure provides an immediate check on the adequacy of the specified model. This is so because the criterion function, when evaluated at the estimated values, coincides with the Box-Pierce goodness of fit statistic. Empirical applications and Monte-Carlo simulations supporting the analytical results and showing the good performance of the estimator in finite samples are also provided.
منابع مشابه
Minimum distance estimation of stationary and non-stationary ARFIMA processes
A new parametric minimum distance time-domain estimator for ARFIMA processes is introduced in this paper. The proposed estimator minimizes the sum of squared correlations of residuals obtained after filtering a series through ARFIMA parameters. The estimator is easy to compute and is consistent and asymptotically normally distributed for fractionally integrated (FI) processes with an integratio...
متن کاملParameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملSeasonal and Periodic Long Memory Models in the Inflation Rates
This paper considers the application of long memory processes to describe inflation with seasonal behaviour. We use three different long memory models taking into account the seasonal pattern in the data. Namely, the ARFIMA model with deterministic seasonality, the ARFISMA model, and the periodic ARFIMA (PARFIMA) model. These models are used to describe the inflation rates of four different cou...
متن کاملAn Evaluation of ARFIMA (Autoregressive Fractional Integral Moving Average) Programs
Strong coupling between values at different times that exhibit properties of long range dependence, non-stationary, spiky signals cannot be processed by the conventional time series analysis. The autoregressive fractional integral moving average (ARFIMA) model, a fractional order signal processing technique, is the generalization of the conventional integer order models—autoregressive integral ...
متن کاملDesign of Optimal Process Flowsheet for Fractional Crystallization Separation Process
A procedure is presented that synthesizes fractional crystallization separation processes to obtain pure solids from multi-component solutions. The method includes a procedure to generate a network flow model to identify alternative process designs for fractional crystallization. The main advantage of this systematic procedure with respect to other reported procedures is using non-equilibri...
متن کامل